Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2-bromobenzyl) trisulfide

Suneel. P. Singh, ${ }^{\text {a }}$ Alan. J. Lough ${ }^{\text {b }}$ and Adrian. L. Schwan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1, and ${ }^{\text {b }}$ Department of Chemistry, University of Toronto, 80 St., George Street, Toronto, Ontario, Canada M5S 3H6
Correspondence e-mail: alough@chem.utoronto.ca

Received 14 January 2009; accepted 14 January 2009
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.034 ; w R$ factor $=0.081$; data-to-parameter ratio $=20.1$.

The title molecule, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~S}_{3}$, lies on a crystallographic twofold rotation axis which bisects the $\mathrm{S}-\mathrm{S}-\mathrm{S}$ angle. The dihedral angle between the two symmetry-related benzene rings is $89.91(9)^{\circ}$. In terms of hybridization principles, the S -$\mathrm{C}-\mathrm{C}$ angle is slightly larger than expected.

Related literature

For related literature, see: Haoyun et al. (2006); De Sousa et al. (1990); Johnson et al. (1997); Rys et al. (2008). For a related synthesis see: Banerji \& Kalena (1980); O’Donnell \& Schwan (2003). For a related crystal structure, see: Abu-Yousef et al. (2006).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~S}_{3} \\
& M_{r}=436.24 \\
& \text { Orthorhombic, } P 2_{1} 2_{1} 2 \\
& a=12.771(3) \AA \\
& b=13.030(3) \AA \\
& c=4.7635(10) \AA
\end{aligned}
$$

$$
V=792.7(3) \AA^{3}
$$

$$
Z=2
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\mu=5.49 \mathrm{~mm}^{-1}
$$

$$
T=150(1) \mathrm{K}
$$

$$
0.16 \times 0.12 \times 0.10 \mathrm{~mm}
$$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\min }=0.378, T_{\max }=0.576$
5451 measured reflections 1745 independent reflections 1447 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.081$
$S=1.06$
1745 reflections
87 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.32$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 659 Friedel pairs
Flack parameter: -0.024 (13)

Table 1
Selected bond angles (${ }^{\circ}$).

$\mathrm{S} 2^{\mathrm{i}}-\mathrm{S} 1-\mathrm{S} 2$	$106.21(9)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 2$	$114.0(3)$

Symmetry code: (i) $-x+1,-y, z$.

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. AJL thanks NSERC Canada for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2135).

References

Abu-Yousef, I. A., Rys, A. Z. \& Harpp, D. N. (2006). J. Sulfur Chem. 27, 15-24. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Banerji, A. \& Kalena, G. P. (1980). Tetrahedron Lett. 21, 3003-3004.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
De Sousa, J. R., Demuner, A. J., Pinheiro, J. A., Breitmaier, E. \& Cassels, B. K. (1990). Phytochemistry, 29, 3653-3655.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Haoyun, A., Jenny, Z., Xiaobo, W. \& Xiao, X. (2006). Bioorg. Med. Chem. Lett. 16, 4826-4829.
Johnson, L., Williams, L. A. D. \& Roberst, E. V. (1997). Pestic. Sci. 50, 228-232.
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
O'Donnell, J. S. \& Schwan, A. L. (2003). Tetrahedron Lett. 44, 6293-6296.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet pp. 307-326. New York: Academic Press.
Rys, A. Z., Abu-Yousef, I. A. \& Harpp, D. N. (2008). Tetrahedron Lett. 49, 6670-6673.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2009). E65, o361 [doi:10.1107/S1600536809001834]

Bis(2-bromobenzyl) trisulfide

S. P. Singh, A. J. Lough and A. L. Schwan

Comment

Organic sulfides are an attractive class of compounds because of their synthetic and pharmaceutical applications. Dibenzyl trisulfide was isolated from the sub-tropical shrub Petiveria alliacea L. (De Sousa et al., 1990; Johnson et al., 1997). Dibenzyl trisulfide dervatives have been synthesized in moderate yield via a diimidazolyl sulfide derivative (Banerji \& Kalena, 1980). The immunomodulatory activitities, molecular mechanism, anti tumor activities and some other biological activities of dibenzyltrisulfide derivatives have been reported (Haoyun et al., 2006).

In the title molecule (Fig. 1), the bond lengths and bond angles are comparable to those observed in a similar compound (Abu-Yousef et al., 2006).

Experimental

The N-protected amino acid derivative (1) (Fig. 2) was synthesized by following the described procedure for its benzyl analog (O'Donnell \& Schwan, 2003). Compound (1) was reacted with trifluoroacetic acid (20 equiv.) at 273 K for 2 hr to give amino acid derivative (2). The title compound (3) was prepared by stirring (2) in dichloromethane at room temperature in 20% yield and was crystallized by slow evaporation of a dichloromethane/methanol ($9: 1, v / v$) solution. It should be noted that compound (2) in dichlorometane on standing at room temperature for several days also gave compound (3).

Refinement

H atoms bonded to C atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and were included in a ridingmodel approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of title compound. All non-H atoms are represented by 30% probability displacement ellipsoids. Atoms labeled with the suffix 'a' are related by the symmetry operator $(-x+1,-y, z)$.

Fig. 2. The reaction scheme for the formation of the title compound.

supplementary materials

Bis(2-bromobenzyl) trisulfide

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~S}_{3}$
$F_{000}=428$
$M_{r}=436.24$
Orthorhombic, $P 2_{1} 2_{1} 2$
Hall symbol: P 2 2ab
$a=12.771$ (3) \AA
$b=13.030$ (3) \AA
$c=4.7635(10) \AA$
$V=792.7$ (3) \AA^{3}
$Z=2$
$D_{\mathrm{x}}=1.828 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 5451 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=5.49 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Block, colourless
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Nonius KappaCCD

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 9 pixels mm^{-1}
$T=150$ (1) K
φ scans and ω scans with κ offsets
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.378, T_{\text {max }}=0.576$
1745 independent reflections
1447 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\max }=27.5^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$
$h=-16 \rightarrow 16$

5451 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.081$
$S=1.06$
1745 reflections
87 parameters
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0416 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.72$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Secondary atom site location: difference Fourier map Flack parameter: -0.024 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$0.42247(3)$	$0.38038(3)$	$0.13013(11)$	$0.04922(17)$
S1	0.5000	0.0000	$0.2536(3)$	$0.0305(3)$
S2	$0.53734(6)$	$0.11976(7)$	$-0.0036(2)$	$0.0319(2)$
C1	$0.4113(3)$	$0.1583(3)$	$-0.1526(8)$	$0.0311(8)$
H1A	0.4221	0.2196	-0.2718	0.037^{*}
H1B	0.3853	0.1024	-0.2750	0.037^{*}
C2	$0.3293(3)$	$0.1822(3)$	$0.0620(7)$	$0.0271(8)$
C3	$0.2529(3)$	$0.1057(3)$	$0.1324(8)$	$0.0356(9)$
H3A	0.2544	0.0412	0.0395	0.043^{*}
C4	$0.1784(3)$	$0.1239(3)$	$0.3296(8)$	$0.0369(9)$
H4A	0.1282	0.0724	0.3722	0.044^{*}
C5	$0.1750(3)$	$0.2175(3)$	$0.4693(9)$	$0.0433(11)$
H5A	0.1232	0.2294	0.6086	0.052^{*}
C6	$0.2470(3)$	$0.2930(3)$	$0.4058(8)$	$0.0367(10)$
H6A	0.2446	0.3572	0.5002	0.044^{*}
C7	$0.3222(3)$	$0.2750(3)$	$0.2054(8)$	$0.0283(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0469(2)$	$0.0294(2)$	$0.0713(3)$	$-0.00040(19)$	$-0.0036(2)$	$0.0041(2)$
S1	$0.0356(7)$	$0.0339(7)$	$0.0219(6)$	$0.0098(6)$	0.000	0.000
S2	$0.0286(4)$	$0.0303(4)$	$0.0369(5)$	$0.0012(4)$	$0.0002(4)$	$-0.0007(5)$
C1	$0.0356(19)$	$0.0353(18)$	$0.0224(18)$	$0.0040(16)$	$-0.0018(16)$	$0.0010(15)$
C2	$0.0272(18)$	$0.0307(19)$	$0.023(2)$	$0.0053(15)$	$-0.0051(13)$	$0.0018(15)$
C3	$0.043(2)$	$0.037(2)$	$0.027(2)$	$0.0185(18)$	$-0.015(2)$	$-0.007(2)$
C4	$0.0286(19)$	$0.044(2)$	$0.038(2)$	$-0.0044(18)$	$-0.0051(16)$	$0.010(2)$
C5	$0.033(2)$	$0.063(3)$	$0.033(2)$	$0.016(2)$	$0.0022(18)$	$0.004(2)$
C6	$0.038(2)$	$0.041(2)$	$0.031(2)$	$0.0149(19)$	$-0.0079(19)$	$-0.0082(18)$
C7	$0.0277(19)$	$0.0294(18)$	$0.028(2)$	$0.0042(14)$	$-0.0081(15)$	$0.0033(15)$

supplementary materials

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 7$	$1.911(3)$
$\mathrm{S} 1-\mathrm{S} 2 \mathrm{i}$	$2.0403(13)$
$\mathrm{S} 1-\mathrm{S} 2$	$2.0403(13)$
$\mathrm{S} 2-\mathrm{C} 1$	$1.829(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.496(5)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9900
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9900
$\mathrm{C} 2-\mathrm{C} 7$	$1.392(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.435(5)$
$\mathrm{S} 2 \mathrm{i}-\mathrm{S} 1-\mathrm{S} 2$	$106.21(9)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{S} 1$	$103.71(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 2$	$114.0(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.7
$\mathrm{~S} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.7
$\mathrm{~S} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.6
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$116.4(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$124.2(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.4(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.1(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.5

C3-C4	1.358 (5)
C3-H3A	0.9500
C4-C5	1.389 (5)
C4-H4A	0.9500
C5-C6	1.380 (6)
C5-H5A	0.9500
C6-C7	1.374 (5)
C6-H6A	0.9500
C2-C3-H3A	119.5
C3-C4-C5	120.5 (4)
C3-C4-H4A	119.8
C5-C4-H4A	119.8
C6-C5-C4	120.0 (4)
C6-C5-H5A	120.0
C4-C5-H5A	120.0
C7-C6-C5	119.8 (4)
C7-C6-H6A	120.1
C5-C6-H6A	120.1
C6-C7- ${ }^{\text {C }}$	122.3 (3)
C6-C7-Br1	118.4 (3)
C2-C7-Br1	119.2 (3)

Symmetry codes: (i) $-x+1,-y, z$.

Fig. 1

supplementary materials

Fig. 2

